A scientist at ORNL’s Spallation Neutron Source aligns a neutron beam collimator to facilitate neutron scattering measurements on TRISO fuel. (Photo: Will Cureton/ORNL)
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Upgrades to the particle accelerator enabling the record 1.7-MW beam operating power at the ORNL’s SNS included adding 28 high-power radio-frequency klystrons (red tubes) to provide higher power for the accelerator. (Photo: Genevieve Martin/ORNL)
The Spallation Neutron Source (SNS) at the Department of Energy's Oak Ridge National Laboratory set a world record when its particle accelerator beam operating power reached 1.7 MW, an improvement on the facility’s original design capability of 1.4 MW, ORNL announced on July 21. That higher power provides more neutrons for researchers who use the Office of Science user facility for materials science investigations.
A control room monitor at ORNL’s SNS displays the power level of 1,555 kW (1.55 MW), a world record for a linear accelerator used for neutron research. (Photo: Jeremy Rumsey/ORNL)
The Spallation Neutron Source (SNS) at the Department of Energy's Oak Ridge National Laboratory set a world record for accelerator-driven neutron research when its linear accelerator reached an operating power of 1.55 MW, improving on the facility’s original design capability of 1.4 MW. That higher power means more neutrons for researchers who use the facility for neutron scattering research to reach materials science advances, ORNL announced recently.